Combined Forecasting of Streamflow Based on Cross Entropy
نویسندگان
چکیده
In this study, we developed a model of combined streamflow forecasting based on cross entropy to solve the problems of streamflow complexity and random hydrological processes. First, we analyzed the streamflow data obtained from Wudaogou station on the Huifa River, which is the second tributary of the Songhua River, and found that the streamflow was characterized by fluctuations and periodicity, and it was closely related to rainfall. The proposed method involves selecting similar years based on the gray correlation degree. The forecasting results obtained by the time series model (autoregressive integrated moving average), improved grey forecasting model, and artificial neural network model (a radial basis function) were used as a single forecasting model, and from the viewpoint of the probability density, the method for determining weights was improved by using the cross entropy model. The numerical results showed that compared with the single forecasting model, the combined forecasting model improved the stability of the forecasting model, and the prediction accuracy was better than that of conventional combined forecasting models.
منابع مشابه
Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملAn Hourly Streamflow Forecasting Model Coupled with an Enforced Learning Strategy
Floods, one of the most significant natural hazards, often result in loss of life and property. Accurate hourly streamflow forecasting is always a key issue in hydrology for flood hazard mitigation. To improve the performance of hourly streamflow forecasting, a methodology concerning the development of neural network (NN) based models with an enforced learning strategy is proposed in this paper...
متن کاملComparison of Two Entropy Spectral Analysis Methods for Streamflow Forecasting in Northwest China
Monthly streamflow has elements of stochasticity, seasonality, and periodicity. Spectral analysis and time series analysis can, respectively, be employed to characterize the periodical pattern and the stochastic pattern. Both Burg entropy spectral analysis (BESA) and configurational entropy spectral analysis (CESA) combine spectral analysis and time series analysis. This study compared the pred...
متن کاملCombined Forecasting of Rainfall Based on Fuzzy Clustering and Cross Entropy
Rainfall is an essential index to measure drought, and it is dependent upon various parameters including geographical environment, air temperature and pressure. The nonlinear nature of climatic variables leads to problems such as poor accuracy and instability in traditional forecasting methods. In this paper, the combined forecasting method based on data mining technology and cross entropy is p...
متن کاملپیشبینی خشکسالی هیدرولوژیک با استفاده از سریهای زمانی
INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016